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In this paper, we construct spatially consistent explicit second order discretizations for
time dependent hyperbolic problems, starting from a given residual distribution (RD) dis-
crete approximation of the steady operator. We review the existing knowledge on consis-
tent RD mass matrices and highlight the relations between different definitions. We then
introduce our explicit approach which is based on three main ingredients: first recast
the RD discretization as a stabilized Galerkin scheme, then use a shifted time discretization
in the stabilization operator, and lastly apply high order mass lumping on the Galerkin
component of the discretization. The discussion is particularly relevant for schemes of
the residual distribution type [18,3] which we will use for all our numerical experiments.
However, similar ideas can be used in the context of residual-based finite volume discret-
izations such as the ones proposed in [14,12]. The schemes are tested on a wide variety of
classical problems confirming the theoretical expectations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The aim of this study is to understand how to construct fully explicit consistent discretizations for time dependent prob-
lems, given a residual-based discretization of steady limit of a hyperbolic conservation law. As a case study we consider
schemes of the residual distribution (RD) type [18,3]. While well understood in the steady case, their formulation in the time
dependent case is not completely clear, due to the lack of a rigorous formulation allowing a natural extension. In particular,
the lack of sufficient constraints on the discretization has led in time to a number of different formulations all featuring dif-
ferent mass matrices [9,22,19,20]. In this paper, we show that all these formulations can be obtained from one another by
adding/subtracting a properly defined dissipation operator. We also show the existence of entire families of additional con-
sistent mass matrices.

Next, we show how to combine all of the above discretization with high order (second order) mass lumping to obtain fully
explicit schemes. This is done in three steps: first rewriting the RD discretization as a stabilized Galerkin scheme, then using
a shifted time operator in the stabilization, and lastly applying high order mass lumping on the Galerkin component of the
discretization. Note that in the case of nonlinear RD discretizations based on second order time integration in time, positivity
preservation is obtained only under an explicit CFL-type condition [4,18]. This fact, related to the properties of the underly-
ing ODE integrator [8], and the highly implicit nature of the schemes leads to poor efficiency. The explicit formulation pro-
posed here is one possible solution to this issue.

The work discussed here somehow generalizes the initial work of [35] where only central Lax-Wendroff type discretiza-
tions are considered. Moreover, in the paper we will show that the ideas presented here also apply to other classes of
schemes, such as the ones proposed in [14].
. All rights reserved.
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The structure of the paper is as follows. We start by introducing the notations used throughout the discussion. Then, in
Section 3 we review different formulations of RD for time dependent problems. We discuss their relations, and show how
several families of consistent formulations exist. The new explicit schemes we propose are presented in Section 4. In partic-
ular, the three main steps mentioned above are described in Sections 4.1, 4.2, and 4.3, while in Section 4.4 we give some
more details on the final form of the different discretizations obtained. A summary of the different numerical schemes that
we use in the numerical tests is given in Section 5, while the results of these tests are discussed in Sections 6 and 7. We end
the paper with some conclusive remarks and some thoughts for further developments.
2. Mathematical problem and notation

We seek approximations of solutions of the time dependent hyperbolic problem
rðuÞ ¼ 0 with rðuÞ ¼ @tuþr �F ðuÞ ð1Þ
on some spatial domain X, and on some temporal domain [0, tf]. We will mainly focus on the two-dimensional case X 2 R2,
but the generalization to three spatial dimensions is trivial.

We discretize X by an unstructured triangulation denoted by T h, with T denoting the generic element of the mesh, and h
the mesh parameter (characteristic mesh size). When no confusion is generated we denote the nodes of T by {1, 2, 3}. In
every element, we denote by~nj the inward pointing vector normal to the edge facing node j, scaled by the length of the edge.
Denoting by ui the P1 Lagrange basis function corresponding to node i 2 T h, we have
ruijT ¼
~ni

2jTj : ð2Þ
The P1 approximation of u will be denoted by uh, and it is given by
uh ¼
X
i2T h

uiui ¼
X
T2T h

X
j2T

ujujjT : ð3Þ
The temporal domain is discretized by a set of non-overlapping time slabs [tn, tn+1]. We denote by Dt = tn+1 � tn the time step.
To simplify the presentation of the next sections we also introduce here the element fluctuation defined as
/ðuhÞ ¼
Z

T
r �F hðuhÞdxdy ¼

I
@T
F hðuhÞ � n̂dl; ð4Þ
the element residual
UðuhÞ ¼
Z

T
rðuhÞdxdy ¼

Z
T
ð@tuh þr �F hðuhÞÞdxdy ¼

X
j2T

jTj
3

duj

dt
þ /ðuhÞ ð5Þ
and the local Galerkin residual
/G
i ðuhÞ ¼

Z
T
uir �F hðuhÞdxdy: ð6Þ
In the expressions above uh represents the P1 numerical approximation of the unknown, and F hðuhÞ a discrete approximation
of the flux. Note that all of the above quantities depend on time via uh. To simplify the notation, we do not introduce a super-
or sub-script indicating the element T over which they are evaluated, this being always clear from the context.
3. Second order RD: the proliferation of mass matrices

Let us for the moment consider the particular case of (1) given by the linear constant advection problem
@tuþ~a � ru ¼ 0: ð7Þ
We focus our attention on discrete counterparts of (7) that, on a slab T h � ½tn; tnþ1� can be written as
X
Tji2T

X
j2T

mT
ij

duj

dt
þ bi/ðuhÞ

( )
¼ 0 8i 2 T h: ð8Þ
Last definitions give a scheme that requires the solution of a (generally) nonlinear system if the mass matrix mij is non-diag-
onal. Moreover, introducing the nodal residuals
UiðuhÞ ¼
X
j2T

mT
ij

duj

dt
þ bi/ðuhÞ ð9Þ
we also require that



1 Wh

Fig. 1. (Left) Formulation 3: dual areas Cj; jCjj ¼ bjjTj. (Right) Formulation 4: area coordinates of the distribution point M; jTjj ¼ bjjTj.
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X
j2T

UjðuhÞ ¼ UðuhÞ ð10Þ
with UðuhÞ given by (5).
The prototype (8) is meant to be a consistent generalization to the time dependent case of the fluctuation splitting/residual

distribution discretization which approximates the steady limit of (7) as
X
Tji2T

bi/ðuhÞ ¼ 0 8i 2 T h ð11Þ
with
 X
j2T

bj ¼ 1: ð12Þ
In order to distinguish the steady advective operator from the time dependent equation, we have chosen to keep a distinc-
tion between the fluctuation (4) and the residual (5), the latter representing the integral of the whole equation.

Historically, the first consistent constructions to obtain such a generalization were based on two different points of view.
In the first approach [10,9], one simply replaces the fluctuations in the discrete equations (11) with the full residual (5). This
residual is then distributed exactly as in (11) (with the LDA scheme in the original reference [10,9,18]), leading to
0 ¼
X
Tji2T

biUðuhÞ ¼
X
Tji2T

X
j2T

mF1
ij

duj

dt
þ bi/ðuhÞ

 !
; mF1

ij ¼
jTj
3

bi ð13Þ
with dij Kronecker’s delta, and F1 standing for Formulation 1.
A second approach [29,22] uses an analogy with stabilized Galerkin finite element schemes in which the discrete equa-

tions (11) are obtained as
X
Tji2T

bi/ðuhÞ ¼
X
Tji2T

/G
i ðuhÞ þ

X
Tji2T

d/i ¼
Z

X
ui
~a � ruhdxdyþ

X
Tji2T

Z
T

dui
~a � ruhdxdy
with the perturbation to the test function dui
depending on the distribution coefficients bi. In particular, for constant advec-

tion and a P1 variable approximation, one can assume dui
to be a constant, to find easily (in two space dimensions)

dui
jT ¼ bi � 1=3. In the time dependent case this naturally leads to
0 ¼
Z

X
uirðuhÞdxdyþ

X
Tji2T

Z
T

dui
rðuhÞdxdy ¼

X
Tji2T

X
j2T

mF2
ij

duj

dt
þ bi/ðuhÞ

 !
; mF2

ij ¼
jTj
36
ð3dij þ 12bi � 1Þ ð14Þ
with dij Kronecker’s delta, and F2 standing for Formulation 2.
A different approach has instead been proposed in [20], where the authors use the idea that in every T 2 T h the combi-

nation of terms arising from the multiplication of the mass matrix with the nodal time derivatives should give back an inte-
gral of the time derivative of uh over a dual sub-element Cj 2 T. Consistency is guaranteed by the requirement jCjj ¼ bjjTj.1 In
particular, in the paper the authors require the node j to belong to Cj (cf. Fig. 1). Conditions for second order of accuracy are
shown to be
X

i2T

mij ¼
jTj
3
;
X
j2T

mij ¼ jTjbi: ð15Þ
ich implicitly assumes bi P 0 8i.
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In the reference, the authors ultimately arrive to the following formulation
0 ¼
X
Tji2T

Z
Ti

rðuhÞdxdy ¼
X
Tji2T

X
j2T

mF3
ij

duj

dt
þ bi/ðuhÞ

 !
; mF3

ij ¼
jTj
3

biðdij þ 1� bjÞ ð16Þ
with dij Kronecker’s delta, and F3 standing for Formulation 3. This formulation is proposed mainly for schemes with a mul-
tidimensional upwind character [18], and in particular for those schemes that, when the advection speed points toward an
edge of element T, give bj P 0 only if j belongs to this edge. In this case, only the rows of mF3

ij relative to these nodes contain
non-zero elements.

The idea of [20] can actually be used to derive still another member to the family of consistent mass matrices. It suffices to
follow the exact same developments of the reference, except that now we consider the sub-cell Cj to be a triangle that does
not contain node j. In particular, whenever bi P 0 8i, we note that we can find a unique point, say M 2 T, such that
uiðMÞ ¼ bi 8i. This means that the bi coefficients represent the area coordinates of M (see Fig. 1). With the notation of
Fig. 1, using the fact that uhðMÞ ¼ b1u1 þ b2u2 þ b3u3 we find in the time dependent case:
0 ¼
X
Tji2T

Z
Ti

rðuhÞdxdy ¼
X
Tji2T

X
j2T

mF4
ij

duj

dt
þ bT

i /ðuhÞ
 !

; mF4
ij ¼

jTj
3

bið1� dij þ bjÞ ð17Þ
with dij Kronecker’s delta, and F4 standing for Formulation 4. Note that the difference with respect to the matrix proposed in
[20] is that here j R Tj. One easily checks that conditions (15) are verified.

All of the above construction can be still generalized by noting that, given the distribution coefficients bT
i , the only con-

straints available are given by (15). These constraints actually correspond to the conservation requirement (10), and to the
requirement that, whenever the differential operator
rðuhÞ ¼ @tuh þ~a � ruh
is (as in the steady case) locally constant, say rðuhÞjT ¼ rT , then
Ui ¼ bT
i jTjrT :
These properties are always verified if we can find a Petrov–Galerkin test function xi such that on every T
UiðuhÞ ¼
Z

T
xirðuhÞdxdy ð18Þ
with
 X
j2T

xj ¼ 1;
1
jTj

Z
T
xidxdy ¼ bT

i : ð19Þ
As we will show later, the formal second order of accuracy is guaranteed as long as xi is locally bounded. Note also that
mT
ij ¼

Z
T
xiujdxdy: ð20Þ
The number of functions that verify these constraints is infinite. For example, to obtain the formulation F1 (cf. equation (13))
one can choose on each T
xF1
i jT ¼ bT

i vT
having denoted by vT the characteristic function
vTðx; yÞ ¼
1 if ðx; yÞ 2 T:

0 if ðx; yÞ R T:

�

Conversely, formulation F2 (cf. equation (14) is obtained for
xF2
i ¼ ui þ

X
Tji2T

dui
vT :
Formulations F3 and F4 are instead obtained by taking for example (cf. equations (16) and (17))
xF3=F4
i jT ¼ vCi

:

Moreover, for any given test function xi verifying all the consistency, conservation, and accuracy constraints, we can easily
come up with a modified function, say ~xi with all the desirable properties. For example, if we can find three bounded func-
tions, say f1, f2, and f3 such that
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X3

j¼1

fj ¼ cf
with cf a constant, we can modify xi as follows:
�xi ¼ xi þ Kðfi � �f iÞ; �f i ¼
1
jTj

Z
T

fi dxdy ð21Þ
with K an arbitrary parameter! Note that this term does not affect consistency or conservation, due to the fact that (using for
the nodes of T the local renumbering fi; j; kg ! f1;2;3g)
X3

j¼1

ðfj � �f jÞ ¼ 0;
Z

T
ðfj � �f jÞdxdy ¼ 0
nor it does pollute the accuracy of the discretization, as long as the each fi is bounded. Moreover, in the P1 case r uh is con-
stant per element, hence
Z

T
ðfj � �f jÞ~a � ruh dxdy ¼ 0
so that the extra term only affects the form of the mass matrix. This leads clearly to quite a large number of consistent mass
matrices, and extra constraints are needed to make sure one does the right thing.

Remark 3.1 (Accuracy and stability). Note that all of the above discretizations can be though as Petrov–Galerkin schemes
where the nodal equations are obtained as
Z

X
xirðuhÞ ¼ 0 8i 2 T h
with a locally differentiable test function xi. As a consequence, all of them have a residual character (if r(uh) = 0, uh is a solu-
tion of the discrete equations). Nevertheless, a stability criterion would be needed to allow to rule out some of these matri-
ces. Unfortunately, few tools are available to analyze the stability of RD schemes, coercivity and/or energy estimates not
being available. A Fourier analysis of the different mass matrix formulations is under way to clarify this aspect. This aspect
is left out of the discussion of this paper, which mainly focuses on the formal accuracy of the schemes.

Before going on to the construction of explicit schemes, we make the following observation. Let us take fi = ui in (21). In
this case we have
�f i ¼ �ui ¼
1
jTj

Z
T
ui ¼

1
3
:

So, according to (21), any mass matrix can be modified as
�mT
ij ¼ mT

ij þ K
Z

T
ðui � �uiÞuj dxdy ¼

Z
T
xiuj dxdyþ K

Z
T
ðui � �uiÞuj dxdy
that leads to the semi-discrete scheme
X
Tji2T

X
j2T

mT
ij þ Kdmij

� � duj

dt
þ bi/ðuhÞ

 !
¼ 0; dmij ¼

jTj
36
ð3dij � 1Þ ð22Þ
with dij Kronecker’s delta. As already noted in [32], the matrix dmij is symmetric, and defines a dissipation operator, that is
vT ½dmij�v P 0; 8v 2 R3:
In the last reference, this term has been used to provide further stabilization to a nonlinear second order variant of a Lax-
Friedrich’s scheme. It is worth noting that comparing (13) and (14) with (22), one immediately sees that
mF2
ij ¼ mF1

ij þ dmij: ð23Þ
The third and first formulations are linked by a very similar relation:
mF3
ij ¼ mF1

ij þgdmij; gdmij ¼
jTj
3

bidij � bib
T
j

� �
; ð24Þ
where, provided that bi P 0 8i, then the symmetric matrix gdmij also defines a dissipation operator. In particular, 8v 2 R3 we
have
vT ½gdmij �v ¼
jTj
3

bT
1b

T
2ðv1 � v2Þ2 þ

jTj
3

bT
1b

T
3ðv1 � v3Þ2 þ

jTj
3

bT
3b

T
2ðv3 � v2Þ2 P 0:
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A similar relation holds for the last formulation, only this time we have
mF1
ij ¼ mF4

ij þgdmij: ð25Þ
This last relation allows finally to show that all the formulations can be obtained from one another by adding/subtracting a prop-
erly defined dissipation operator:
mF1
ij ¼ mF4

ij þgdmij;

mF2
ij ¼ mF1

ij þ dmij ¼ mF4
ij þgdmij þ dmij;

mF3
ij ¼ mF1

ij þgdmij ¼ mF4
ij þ 2gdmij:

ð26Þ
Remark 3.2. The last relations show that, for a fixed approximation of the advection operator, the formulation F4 is the least
dissipative of all. Nevertheless, a formal stability analysis is still needed to clarify this aspect (cf. Remark 3.1).
Remark 3.3. In one space dimension, if the spatial discretization is given by the classical 1d upwind scheme, the
formulations F1, F3, and F4 become identical. The formulation F2, instead, reduces to the 1D SUPG scheme obtained by
defining the s SUPG parameter as [28,37,24]
s ¼ Dx
2jaj :
4. Construction of explicit schemes

We present here the construction of consistent explicit variants of RD schemes, based on Runge–Kutta time-stepping. The
construction consists of three steps:

1. Rewriting RD as a stabilized Galerkin discretization.
2. Use of a shifted time discretization in the stabilization term.
3. Introduction of high order mass lumping.

These three steps are described in the following sections.

4.1. Bubble stabilization

We start by assuming that, however complex the definition of the bi coefficients and of the mass matrix, there exists a
uniformly bounded and locally differentiable function ci such that we can rewrite the (8) as
Z

X
uið@tuh þ~a � ruhÞdxdyþ

X
Tji2T

Z
T
cið@tuh þ~a � ruhÞdxdy ¼ 0; ð27Þ
where ci plays the role of a ‘‘stabilizing” bubble function, and satisfies
P
j2T

cj ¼ 0;

R
Tðui þ ciÞ@tuhdx dy ¼

P
j2T

mij
duj

dt ;

1
jTj
R

Tðui þ ciÞdx dy ¼ bi:

8>>>>><>>>>>:
ð28Þ
The last three relations guarantee the satisfaction of the conservation property, and of the consistency with the (given) spa-
tial discretization, so that ultimately (cf. equation (9))
UiðuhÞ ¼
X
j2T

mij
duj

dt
þ bi/ðuhÞ ¼

Z
T
uirðuhÞdxdyþ

Z
T
cirðuhÞdxdy: ð29Þ
Note that, for our scopes, it is not necessary to actually show particular forms of such functions which, as we shall see in the fol-
lowing, are just an artifact allowing to analyze the accuracy of the schemes proposed in the paper. Nevertheless, whenever we can
exhibit the existence of a Petrov–Galerkin test function xi such that (18) holds, we can set
cijT ¼ xijT �uijT : ð30Þ
For example, for the formulations seen in the previous sections we have:
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cF1
i jT ¼ bi �uijT ;

cF2
i jT ¼ dui

¼ bi �
1
3

;

cF3=F4
i jT ¼ vCi

�uijT :

ð31Þ
4.2. Time-shifted stabilization operator

The second ingredient in our construction is the use of an explicit time-stepping scheme, combined with a shifted time
discretization in the stabilization operator. We focus here on Runge–Kutta (RK) schemes, however other possibilities exist
and will be explored in the future. Let us denote by duk = uk � un the increment of the kth step of a given explicit RK scheme.
Similarly, let ek be the kth step evolution operator so that for the problem
du
dt
þ eðuÞ ¼ 0
we can rewrite each RK step as
duk

Dt
þ ek ¼ 0:
In particular, in the following we will denote by rk the quantity
rk ¼ duk

Dt
þ ek: ð32Þ
For example for the classical TVD RK2 scheme we have
r1 ¼ du1

Dt þ e1 ¼ 0; e1 ¼~a � run;

r2 ¼ du2

Dt þ e2 ¼ 0; e2 ¼ 1
2
~a � run þ 1

2
~a � ru1;

(
ð33Þ
Similarly, the TVD RK3 scheme gives
r1 ¼ du1

Dt þ e1 ¼ 0; e1 ¼~a � run;

r2 ¼ du2

Dt þ e2 ¼ 0; e2 ¼ 1
4
~a � run þ 1

4
~a � ru1;

r3 ¼ du3

Dt þ e3 ¼ 0; e3 ¼ 1
6
~a � run þ 1

6
~a � ru1 þ 2

3
~a � ru2:

8>><>>: ð34Þ
With this notation we can write the kth step of the RK time integrator as
rk ¼ 0:
Its Galerkin discretization writes
Z
X
uir

kðuhÞdxdy ¼
Z

X
ui

duk
h

Dt
dxdyþ

Z
X
uie

kðuhÞdxdy ¼ 0:
The next step is to add the contribution of the bubble. The standard approach would be to write this contribution as
X
Tji2T

Z
T
cir

kðuhÞdxdy ¼
X
Tji2T

Z
T
ci

duk
h

Dt
þ ekðuhÞ

� �
dxdy;
however, this would lead to a scheme in which the mass matrix depends on the bubble stabilization, which in turn might
depend strongly on the unknown, eventually requiring the solution of a highly nonlinear algebraic system at each RK step.
What we propose is to replace only in the bubble contribution the kth step residual rk(uh) by a modified residual �rkðuhÞ, which
makes use of a different approximation of the time derivative. In practice, we will look for �rkðuhÞs differing from rk(uh) only in
the definition of the time increment, that is
�rkðuhÞ ¼
duk

Dt
þ ek: ð35Þ
The constraints on �rkðuhÞ guaranteeing that the overall accuracy of the discretization is not deteriorated will be discussed
shortly. For the moment we observe that when adding this contribution we obtain with simple manipulations:
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0 ¼
Z

X
uir

kðuhÞdxdyþ
X
Tji2T

Z
T
ci�r

kðuhÞdx dy

¼
Z

X
ui

duk
h

Dt
dxdyþ

Z
X
ui

duk
h

Dt
þ ekðuhÞ

 !
dxdyþ

X
Tji2T

Z
T
ci

duk
h

Dt
þ ekðuhÞ

 !
dxdy�

Z
X
ui

duk
h

Dt
dxdy

¼
Z

X
ui

duk
h

Dt
þ
X
Tji2T

Z
T
ðui þ ciÞ

duk
h

Dt
þ ekðuhÞ

 !
dxdy�

Z
X
ui

duk
h

Dt
dxdy ¼

Z
X
ui

duk
h

Dt
þ
X
Tji2T

URKðkÞ
i �

Z
X
ui

duk
h

Dt
dxdy: ð36Þ
The last relations are obtained by first adding and subtracting the Galerkin integral of the approximate time increment
duk=Dt, then using the properties of the bubble function ci (cf. equations (9) and (31)), and finally introducing the fully
discrete split residuals:
URKðkÞ
i ¼

Z
T
ðui þ ciÞ�rkðuhÞdxdy ¼

X
j2T

mij

duk
j

Dt
þ bi/

RKðkÞðuhÞ ð37Þ
with
/RKðkÞ ¼
Z

T
f kðuhÞdxdy and

X
j2T

URKðkÞ
j ¼

Z
T

�rhðuhÞdxdy ¼ URKðkÞ: ð38Þ
The final form of the scheme is
Z
X
ui

duk
h

Dt
dxdy�

Z
X
ui

duk
h

Dt
dxdy ¼ �

X
Tji2T

URKðkÞ
i ; ð39Þ
where now the mass matrix obtained from the first integral is independent on the solution.
All that remains to do is to derive a sufficient condition on the �rk guaranteeing that the accuracy of the Runge–Kutta

Galerkin approximation is not lost when adding the bubble contribution. To do this we use a truncation error analysis, fol-
lowing the approach of [31]. All the details of the analysis are given in two appendices at the end of the paper. The general
idea of the proof is, given a sufficiently smooth classical solution w, and a smooth function w 2 C1

0ðXÞ, to verify under which
conditions the truncation error
En ¼
X
i2T h

wi

Z
X
ui

dwnþ1
h

Dt
þ enþ1ðwhÞ

� �
dxdyþ

����� X
i2T h

wi

X
Tji2T

Z
T
ci

dwnþ1
h

Dt
þ enþ1ðwhÞ

 !
dxdy

����� ð40Þ
is of an order OðhpÞ. The analysis reported in Appendix A and B is done for the general case p P 2, even though the paper
focuses only on the case p = 2. Note that in the definition of the error we have used the notation introduced in the previous
section. This means that en + 1(wh) represents the discrete evolution operator of the last RK step, which actually makes use of
flux values at known time-steps (cf. equations (33) and (34)). The analysis makes use of the following two hypotheses.

Hypothesis 4.1 (RK truncation error). Given a smooth classical solution w such that @twþr �F ðwÞ ¼ 0, a pth order RK
scheme verifies the truncation error estimate
rnþ1ðwÞ ¼ dwnþ1

Dt
þ enþ1ðwÞ ¼ CRKDtp:
Hypothesis 4.2 (Semi-discrete approximate residual estimate). Given a smooth classical solution w such that
@twþr �F ðwÞ ¼ 0, the approximate semi-discrete residual �r verifies the estimate
�rnþ1ðwÞ ¼ dwnþ1

Dt
þ enþ1ðwÞ ¼ CRKDtl
for some l 6 p.
The main result is summarized by the following proposition.

Proposition 4.3 (Accuracy and time-stepping). Given a pth order spatial approximation and a pth order RK scheme verifying
Hypothesis 4.1, the truncation error (40) verifies an estimate of the type
En 6 Chp
provided that
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1. The bubble ci is uniformly bounded.
2. The approximate semi-discrete residual verifies Hypothesis 4.2 with
l P p� 1:
In particular, in the second order case of interest here, it is enough to provide definitions of the approximate time increments
yielding a first order semi-discrete operator.
Remark 4.4 (Accuracy, time-stepping, and distribution coefficients). As seen in Section 3, for all the known consistent formu-
lations of RD we can provide define the bubble function as ci ¼ xi � wi is always bounded. For the formulations recalled in
Section 3, xi, and hence ci, is bounded whenever the distribution coefficients bi are.

To end the construction we give particular definitions of �rk that satisfy Hypothesis 4.2 (see Appendix B):

RK2 scheme
du1 ¼ 0) �r1 ¼ r �F ðunÞ;

du2 ¼ dunþ1 ¼ u1 � un ) �r2 ¼ u1 � un

Dt
þr �F ðu

nÞ þ r �F ðu1Þ
2

:
ð41Þ
RK3 scheme
d�u1 ¼ 0) �r1 ¼ r �F ðunÞ;

d�u2 ¼ u1 � un

2
) r2 ¼ u1 � un

2Dt
þr �F ðu

nÞ þ r �F ðu1Þ
2

;

d�u3 ¼ d�unþ1 ¼ 2ðu2 � unÞ ) �r3 ¼ 2ðu2 � unÞ
Dt

þr �F ðu
nÞ þ r �F ðu1Þ þ 4r �F ðu2Þ

6
:

ð42Þ
Note that in this case the coefficients involved in the definition take into account the fact that u1 and u2 are initial guesses
for the solution at times tn + Dt and tn + Dt/2, respectively.

4.3. High order mass lumping

Scheme (39) still requires the inversion of the Galerkin mass matrix at each RK step. Even though this matrix is constant
and symmetric positive definite, its inversion does introduce an additional unnecessary computational cost.

So, the last step in our construction is the introduction of a high order mass lumping strategy. High order mass lumping for
Galerkin discretizations of the wave equation are developed e.g. in [23,39,38]. We refer to these articles, and to the references there-
in, for details on the construction. Here we just recall its basic principles, and specialize it to the simple P1 case of interest in our case.

The basic idea is to replace the Galerkin integral of the time derivative by its approximation obtained by means of a quad-
rature rule:
Z

T
ui@truhdxdy �

X
xq

jTjxquiðxqÞ@tuhðxqÞ:
It can be shown that a sufficient condition for this approximation to keep a truncation error of OðhpÞ is for the quadrature formula
to integrate exactly polynomials of degree p � 1 [23,39,38].

The interesting application of this approach is when the quadrature points coincide with all the degrees of freedom of the
element. In this case, one ends with
Z

T
ui@truhdxdy �

X
j2T

jTjxjuiðxjÞ@tuj ¼ xijTj@tuj
since ui(xj) = dij. So to apply high order mass lumping, retaining a truncation error of OðhpÞ, the finite element space has to be
such that the degrees of freedom define on each element a quadrature formula integrating exactly polynomials of degree p � 1.
Examples of such spaces can be found in [23,39,38]. In the P1 case we are very lucky since the formula
Z

T
gðx; yÞdxdy �

X
j2T

1
3
jTjgj
does integrate exactly linear polynomials, hence it guarantees the preservation of a Oðh2Þ truncation error. In particular, we
obtain for the mass matrix the well known result:
Z

X
ui@tuh dxdy �

X
T2ji2T

jTj
3
@tui ¼ jSij@tui
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with
jSij ¼
X
Tji2T

1
3
jTj: ð43Þ
Before concluding with the final construction of our schemes we note that in the P1 case, a different interpretation is
obtained by using (22). In particular, if we take K = 3 and apply the mass matrix modification to the Galerkin scheme
we get:
�mij ¼
jTj
12
ðdij þ 1Þ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Galerkin

þ jTj
12
ð3dij � 1Þ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{3dmij

¼ jTj
3

dij:
Which again shows that mass lumping for the Galerkin scheme does not reduce the asymptotic accuracy in the P1 case, how-
ever it does introduce a degree of dissipation.

4.4. Fully explicit schemes

We now put together all the ingredients presented so far to obtain the final discretization. Two possibilities exist, leading
to two distinct classes of methods.

4.4.1. Selectively lumped (SL) schemes
If in the last line of (36) only the mass-matrix corresponding to the first Galerkin integral is lumped we obtain the fol-

lowing selectively lumped explicit formulation:
jSij
duk

i

Dt
¼ �

X
Tj2T

URKðkÞ
i �

Z
T
ui

duk
h

Dt
dxdy

 !
: ð44Þ
In this case, the effect of the lumping leads to the following modification of the RD mass matrix:
mSL
ij ¼ mT

ij �mG
ij ; mG

ij ¼
jTj
12
ðdij þ 1Þ ð45Þ
with mG
ij the Galerkin mass matrix.

4.4.2. Globally lumped (GL) schemes
When lumping both Galerkin mass matrices we obtain the following globally lumped explicit formulation:
jSij
duk

i � duk
i

Dt
¼ �

X
Tj2T

URKðkÞ
i : ð46Þ
In this case, there is no modification on the residual distribution mass matrix, however, the lumping modifies the explicit
iterations that now depend on the definition of duk.

When combining this definition with the explicit RK2 scheme with shifted time operator in the stabilization (cf. equations
(33) and (41)), we obtain for the SL schemes
jSij
u1

i
�un

i
Dt ¼ �

P
Tji2T

bi/ðun
hÞ;

jSij
unþ1

i
�un

i
Dt ¼ �

P
Tji2T

URK2ð2Þ
i �

P
j2T

mG
ij

u1
j
�un

j

Dt

 !
8>>>><>>>>: ð47Þ
with mG
ij as in (45), and with
URK2ð2Þ
i ¼

X
j2T

mT
ij

u1
j � un

j

Dt
þ 1

2
bi / un

h

	 

þ / u1

h

	 
	 

:

The update for the GL schemes is somewhat simpler and given by
jSij
u1

i
�un

i
Dt ¼ �

P
Tji2T

bi/ðun
hÞ;

jSij
unþ1

i
�u1

i
Dt ¼ �

P
Tji2T

URK2ð2Þ
i :

8>>><>>>: ð48Þ
Conversely, in the RK3 case we get for the SL schemes (cf. equations (34) and (42))
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jSij
u1

i
�un

i
Dt ¼ �

P
Tji2T

bi/ðun
hÞ;

jSij
u2

i
�un

i
Dt ¼ �

P
Tji2T

URK3ð2Þ
i �

P
j2T

mG
ij

u1
j
�un

j

2Dt

 !
;

jSij
unþ1

i
�un

i
Dt ¼ �

P
Tji2T

URK3ð3Þ
i �

P
j2T

mG
ij 2

u2
j
�un

j

Dt

 !

8>>>>>>>>><>>>>>>>>>:
ð49Þ
with mG
ij as in (45), and with
URK3ð2Þ
i ¼

X
j2T

mT
ij

u1
j � un

j

2Dt
þ 1

4
bi / un

h

	 

þ / u1

h

	 
	 


and
URK3ð3Þ
i ¼

X
j2T

mT
ij2

u2
j � un

j

Dt
þ bi

1
6

/ un
h

	 

þ 1

6
/ u1

h

	 

þ 2

3
/ u2

h

	 
� �
:

As before, the update for the globally lumped schemes is somewhat simpler and given by
jSij
u1

i
�un

i
Dt ¼ �

P
Tji2T

bi/ un
h

	 

;

jSi j
Dt u2

i �
u1

i
þun

i
2

� �
¼ �

P
Tji2T

URK3ð2Þ
i ;

2jSi j
Dt

unþ1
i
þun

i
2 � u2

i

� �
¼ �

P
Tji2T

URK3ð3Þ
i ;

8>>>>>>><>>>>>>>:
ð50Þ
Remark 4.5 (Fluctuations/signals). Both formulations, the one based on selective lumping and the one based on global
lumping, allow to see the RD component of the discretization as an error between two different approximations of the
unknown at certain time levels. When using the formulation F1 of the RD discretization (cf. Section 3, equation (13)), the
second step of the RK2 scheme with selective lumping can be recast as
jSij
unþ1

i � un
i

Dt
�
Z

X
ui

u1
h � un

h

Dt
¼ �

X
Tji2T

biU
RK2ð2Þ; ð51Þ
where
URK2ð2Þ ¼
Z

T

u1
h � un

h

Dt
þ 1

2
r �F h un

h

	 

þ 1

2
r �F h u1

h

	 
� �
dxdy:
Clearly equation (51) expresses the error between two local approximations of the time variation of the unknown as a func-
tion of signals proportional to elemental errors represented by the residual URK2(2). This is even more apparent in the case of
the globally lumped scheme which reads, in RK2 case:
jSij
unþ1

i � u1
i

Dt
¼ �

X
Tji2T

biU
RK2ð2Þ: ð52Þ
The RK3 version of the last equation is obtained immediately from equation (50). In (55) the RD weighted average on the
right-hand side expresses the error between two different approximations of the unknown at time tnþ1. The same remarks
applies of course to the case of the RK3 schemes. In some way the explicit formulations proposed here lead us back to the
original ideas of Roe [34] in which the nodal error is proportional to the signals sent by surrounding elements.
Remark 4.6 (Relations with explicit predictor–corrector). The explicit formulation proposed here is also related to the explicit
predictor/multi-corrector formulation of the SUPG scheme used for example in [24–26] (see also [40,28,36]). In the simplest
setting, in this formulation on replaces an implicit time integrator by a finite number of explicit steps. In the case of the
Crank–Nicholson time integrator for example the idea is to rewrite the SUPG scheme as
jSij
u1

i � un
i

Dt
¼ �

Z
X
ui
~a � run

hdxdyþ
X
Tji2T

Z
T

~a � ruis~a � run
hdxdy;

jSij
uk

i � un
i

Dt
¼ �

Z
X
ui
~a � ruk�1

h þ un
h

2
dxdyþ

X
Tji2T

Z
T

~a � ruis
uk�1

h � un
h

Dt
þ~a � ruk�1

h þ un
h

2

� �
dxdy;
where k P 2 and unþ1
i ¼ ukmax

i . The second relation can immediately be recast as
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jSij
uk

i � un
i

Dt
¼ �

X
Tji2T

X
Tji2T

USUPGðkÞ
i �

Z
T
ui

uk�1
h � un

h

Dt
dxdy

 !
with
USUPGðkÞ
i ¼

Z
T
ðui þ~a � ruisÞ

uk�1
h � un

h

Dt
þ~a � ruk�1

h þ un
h

2

� �
dxdy
and
X
j2T

USUPGðkÞ
j ¼ Uk ¼

Z
T

uk�1
h � un

h

Dt
þ~a � r uk�1

h þ un
h

2

� �
dxdy:
This is basically the selectively lumped formulation of the SUPG scheme in RD form. In particular, when using only one cor-
rection step we end up exactly with the RK2 scheme (47).
Remark 4.7 (Explicit residual-based finite volume formulation). The approach presented here finds application also in the case
of finite volume discretizations where the stabilization operator is proportional to some local approximation of the residual,
rather than to local variations of the solution. Such schemes have been proposed for example in [14,11] and, in a different
spirit, in [12]. The schemes of [14,11] in their basic formulation can be rewritten as
jCij
dui

dt
þ
I
@Ci

HC � n̂dl� 1
2

X
j

hjWijUij ¼ 0; ð53Þ
whereHC is a centered finite volume numerical flux, while the last term represent stabilization terms. These terms are func-
tion of a local residual Uij, computed on the staggered cell Cij (cf. Fig. 2) and defined as [14,11]
Uij ¼
Z

Cij

duh

dt
þr �F hðuhÞ

� �
dxdy;
where now uh is a polynomial approximation of the unknown reconstructed starting from cell averages. We refer to [14,11] for
further details, and in particular for the definition of the local mesh size hj, and of the Wij parameter in (53). The important
point is that the residual Uij has to include the time derivative of the numerical unknown to attain consistency in the spatial
discretization. In [14,11] the authors use the same discrete operator to approximate both the time derivative of ui in (53), and
in Uij. this naturally leads to the appearance of a mass matrix rendering the scheme implicit in space. The approach proposed
here allows to overcome this limitation allowing the construction of an explicit RK schemes in which the time derivative in
Uij is approximated by time increments using known values of the discrete solution. In the RK2 case for example the scheme
would read:
jCij
u1

i � un
i

Dt
þ
I
@Ci

Hn
C � n̂dl� 1

2

X
j

hjWij

Z
Cij

r �F n
hdxdy ¼ 0;

jCij
unþ1

i � un
i

Dt
þ
I
@Ci

Hn
C þH1

C

2
� n̂dl� 1

2

X
j

hjWij

Z
Cij

u1
h � un

h

Dt
þr �F

n
h þr �F 1

h

2

� �
dxdy ¼ 0
with H1
C ¼ HC u1

h

	 

and F 1

h ¼ F h u1
h

	 

.

Fig. 2. Residual based finite volume. Cells Ci and Cj, and staggered cell Cij .
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5. Schemes used in the numerical experiments

This section is devoted to the description of the schemes actually used in the numerical tests discussed in the following
paragraphs, and of some details relative to their implementation. We will discuss the results obtained with four well known
schemes: the LDA scheme, the blended LDAN scheme or B scheme, the Streamline Upwind scheme, or SU scheme for short,
and a centered Blended scheme, Bc for short, constructed starting from the limited stabilized Lax-Friedrich’s scheme of [2].
The results obtained with other RD schemes are very similar in nature. An important remark is that so far we still have not
worked on the adaptation of nonlinear RD discretizations to the construction proposed in the paper. This means that we limited
ourselves to code the schemes as they are presented in the literature. Improvements will be made in the future concerning
strict preservation of positivity. Even so, as we will see, the numerical results are excellent, and confirm our theoretical
analysis.

5.1. LDA scheme

We test our construction on the well known second order linear multidimensional upwind LDA scheme, defined by the
distribution coefficients [18]:
bLDA
i ¼ kþi

X
j2T

kþj

 !�1

; ð54Þ
where, using the notation of equation (2), we define 8T 2 T h
ki ¼
1
2
@F ð�uÞ
@u

�~ni ð55Þ
with �u the arithmetic average of the values of uh in the nodes of T. Note that in the case of a system of conservation laws, the
kis are matrices, and their sign in (54) is computed in the standard matrix sense, via eigenvalue decomposition. For more
details on the definition and properties of the LDA scheme, the reader is referred to [18,1].

In the scalar case we will compare the results obtained when using the different formulations recalled in Section 3. In
particular, the scheme has been coded exactly as described in equations (47) and (49), for the selectively lumped scheme,
and in equations (48) and (50) for the global lumped scheme. In both cases, we replace the quantities URK2ðkÞ

i and URK3ðkÞ
i

by (see equations (38), (41), and (42) for the notation)
ULDAðkÞ
i ¼

X
j2T

mLDA
ij duk

j þ DtbLDA
i /RKðkÞ: ð56Þ
In particular, the form of the mass matrix mLDA
ij will depend of the formulation chosen (cf. Section 3). To shorten the text we

will lump together the acronyms when referring to a scheme. For example, we shall speak of the LDA-F1-SL-RK2 when refer-
ring to the scheme obtained using the LDA distribution coefficients, the mass matrix of the formulation 1, selective lumping,
and the RK2 scheme in time. Similarly for all the other combinations.

5.2. Blended LDA-N scheme

As suggested by its name, the Blended LDA-N scheme, or B scheme for short, is a blending between the LDA scheme of
Section 5.1 with the first order positive multidimensional upwind N scheme defined by the spatial splitting [18,1,16]
/N
i ¼ kþi ðui � uinÞ; uin ¼

X
j2T

kþj

 !�1

�/ðuhÞ þ
X
j2T

kþj uj

 !
:

In particular, following [4], we set for the B scheme
UBðkÞ
i ¼ ð1� lðuhÞÞULDAðkÞ

i þ lðuhÞUNðkÞ ð57Þ
with ULDAðkÞ
i given by (56) and with
UNðkÞ
i ¼ jTj

3
duk

i þ Dt/NðkÞ
i

having denoted by /NðkÞ
i the spatial contribution of the N scheme corresponding to the kth RK step. Expression (57) is used in

(47)–(50) to replace URK2ðkÞ
i and URK3ðkÞ

i .
Concerning the blending parameter l(uh) we have used the standard definition of Deconinck et al. [19,16] (cf. also equa-

tion (38)):
lðuhÞ ¼
jURKðkÞjP
j2T jU

NðkÞ
j j
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for systems of equations, the blending procedure has been performed on residuals projected in characteristic directions, as
explained in [5,4].

As a last remark, we note that only when using global lumping for l(uh) = 1 does the B scheme defined by (57) reduce to
the N scheme with RK time integration. In the selective lumping case, for l(uh) = 1 we get (cf. equation (44)
jSij
duk

i

Dt
þ
X
Tji2T

/NðkÞ
i ¼ jSij

duk
i

Dt
�
Z

X
ui

duk
h

Dt
dxdy;
where the left hand side corresponds to the kth RK step of the N scheme, while the right hand side contains some kind of
anti-diffusive correction (cf. Section 3.).

5.3. The SU scheme

To test the behavior of our formulation with different type of discretizations, we also consider centered schemes. The first
is referred to in the RD literature either as SUPG scheme or as LW scheme. It is defined by the distribution coefficients
bSU
i ¼

1
3
þ kis: ð58Þ
Independently on the definition of the scaling parameter s, the second term on the last definition introduces some Stream-
line Upwinding in the distribution [18], which is why we refer to this scheme as to the SU scheme. In our computations we
have taken
s ¼
X
j2T

jkjj
 !�1

: ð59Þ
For the Euler equations, last expression is meant in the usual matrix sense.
Finally, we replace the quantities URK2ðkÞ

i and URK3ðkÞ
i by (see equations (38), (41) and (42) for the notation)
USUðkÞ
i ¼

X
j2T

mSU
ij duk

j þ DtbSU
i /RKðkÞ: ð60Þ
As for the LDA scheme, also for the SU scheme the form of the mass matrix mSU
ij depends of the formulation chosen (cf.

Section 3).

5.4. Central blended scheme

In [2,32] the authors introduce a centered discretization based on a nonlinear variant of a Lax-Friedrich’s scheme. This
limited stabilized Lax-Friedrich’s scheme, or LLFs scheme, is obtained starting from the positive first order Lax-Friedrich’s
(LF) splitting
/LF
i ¼

1
3

/ðuhÞ þ aLF

X
j2T

ðui � ujÞ
 !

; ð61Þ
where aLF is the Lax-Friedrich’s dissipation coefficient which we set to
aLF ¼
1
2

aT hT ; aT ¼max
j�2T

@F ðujÞ
@u

���� ����

in the scalar case, while for the Euler equations we have set
aLF ¼
1
2

max
j�2T
ðk~ujk þ ajÞhT
with ~u the flow speed, a the speed of sound, and hT a reference length for element T.
The LF scheme is only first order. To obtain a formally second order nonlinear splitting we proceed as follows. First we

define the LF–RK splitting
ULFðkÞ
i ¼ jTj

3
duk

i þ Dt/LFðkÞ
i

having denoted by /LFðkÞ
i the kth RK step of the spatial operator (61). Next, we compute bounded distribution coefficients by

applying a sign preserving nonlinear mapping. Several ways of doing this exist, and we refer to [6,2] for a discussion. Here,
we set:
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bLLF
i ¼

max 0;ULFðkÞ
i URKðkÞ

� �
P

j2T max 0;ULFðkÞ
j URKðkÞ

� � : ð62Þ
The limited LF scheme is then defined by
ULLFðkÞ
i ¼ bLLF

i URKðkÞ:
As shown in previous work [2,32,30], the limiter (62) not taking into account the directional propagation of the information
typical of hyperbolic problems, the LLF scheme shows mild spurious modes that eventually reduce its accuracy to first order.
This is cured as in the above references by adding an upwind bias inspired by the SU scheme:
bLLFs
i ¼ bLLF

i þ dðuhÞkis ð63Þ
with s as in (59). We refer the reader to [2,32,30] for more details on the theoretical background leading to this choice. We
limit ourselves to recall that d(uh) is a smoothness sensor such that d(uh) = 1 in smooth areas, while d ¼ OðhTÞ in presence of
discontinuities. In our computations we have set in the scalar case [2,32,30]
dðuhÞ ¼min 1;
Dth2

T aT jujT
jURKðkÞj

 !
; ð64Þ
where jujT is the maximum of the absolute value of the solution over the element. For the Euler equations, the extension is
done following [2]: the limiter (62) is evaluated on residual projected on local characteristic directions, while the jURKðkÞj in
(64) is replaced by the scalar entropy component of URKðkÞ. This is computed as
us ¼ l0 �URKðkÞ;
where l0 is the left eigenvector of the flux Jacobian corresponding to the entropy wave. For the Euler equations d(uh) is then
the scalar quantity (see [2] for more)
dðuhÞ ¼min 1;
Dth2

T

jusj

 !
: ð65Þ
Normally, we would set
ULLFsðkÞ
i ¼ bLLFs

i URKðkÞ ð66Þ
and replace URK2ðkÞ
i and URK3ðkÞ

i in (47)–(50) by (66). However, we found that much better results are obtained, at negligible
extra cost, by using the central blended scheme, or Bc scheme for short, defined by
UBcðkÞ
i ¼ bBc

i URKðkÞ; bBc
i ¼ dðuhÞbSU

i þ ð1� dðuhÞÞbLLF
i ð67Þ
From definition (65) we see that being d(uh) a scalar quantity, the extra cost with respect to the LLFs scheme is negligible.
5.5. Computation of the time step

All the numerical results presented in the following section have been obtained by computing the time step as (cf.
Section 5.3):
Dt ¼min
i2T h

jSijP
Tji2TaLF

: ð68Þ
For all the nonlinear problems considered, aLF is evaluated using solution values at the last known time step.
A Fourier analysis on structured triangulations is under way to have a better estimate of the time step stability limit for

the linear schemes.
6. Scalar results

The scalar tests we present have two objectives: verify the accuracy of our explicit formulation for different forms of the
mass matrix, and for schemes of different nature (multidimensional upwind, and centered); test the non-oscillatory nature
of the results obtained with the nonlinear schemes, when no modifications are introduced to take into account the additional
terms introduced by RK formulation.

Unless stated, all the numerical tests, including the Euler tests, have been performed on unstructured triangulations with
the topology shown on Fig. 3.



5668 M. Ricchiuto, R. Abgrall / Journal of Computational Physics 229 (2010) 5653–5691
6.1. Advection of a smooth profile: grid convergence

The first test involves the simple scalar equation
@tuþ @xu ¼ 0
solved on the rectangular domain [0,2] � [0,1]. The initial solution is set to
u0 ¼
cos2ð2prÞ if r 6 0:25
0 otherwise

(

with r2 = (x � 0.5)2 + (y � 0.5)2. We solve the problem up to time t = 1 on a series of five meshes with the topology shown on
Fig. 3. The coarsest mesh has a reference element size h � 1/20 (10 points in the smooth cosinusoidal profile). The other
meshes are obtained via four steps of conformal refinement. We use this test to study the accuracy of the different schemes
discussed in the paper. The accuracy is monitored by the convergence of the L1 norm of the error with respect to the exact
solution. The behavior of the L1 and L2 norms is qualitatively and quantitatively very similar.

The first exercise is to verify that indeed our RK formulation leads to second order discretizations, independently on the
starting form of the (consistent) mass matrix. We perform the test for all the mass matrix formulations for the LDA scheme,
which is the most popular multidimensional upwind RD scheme.

The results are summarized in Figs. 4 and 5, where we report the grid convergence history and the rate of convergence
history, respectively. The first remark we can make is that our explicit formulation does lead to a second order discretization.
This is clear especially from the rates of convergence observed. What is more interesting is that the RK2 schemes all yield the
same accuracy, while the RK3 scheme with global lumping seem to actually be less and less accurate as the mesh is refined.
We believe this might be the consequence of a (mild) linear stability problem. We are currently performing a Fourier analysis
on structured grids to better understand this behavior. There are minor differences between the different mass matrix forms
which, in our opinion, do not justify the use of the more complex formulations F3 and F4 (cf. Section 3), especially in view of
the extension to systems.

We repeat the same exercise with the SU scheme, only this time we only test the mass matrix formulations F1 and F2 (cf.
Section 3). The results are shown on Fig. 6. The same remarks made for the LDA scheme apply also to the SU distribution:
second order of accuracy is obtained already with the RK2 scheme, independently of the mass matrix and lumping choices;
the RK3 scheme with global lumping suffers from a drop in the convergence rate, which might be caused by the presence of a
linear instability.

We now come to the nonlinear schemes. We first test the B scheme, using either formulation F1, or formulation F2
for the LDA mass matrix. The results are displayed on Fig. 7. The asymptotic rate of convergence obtained is about 1.75–
1.8, independently on the formulation. Clearly, when using global lumping, the drop in convergence speed of the LDA
affects the B scheme as well. Lastly, on Fig. 8 we report the results obtained with the Bc scheme. Once more, we observe
asymptotic convergence rates ranging from 1.7 to 1.9, with the exception of the RK3 scheme in conjunction with global
lumping.

We believe these tests confirm our theoretical construction. In particular the fact that with the RK2 scheme one already
obtains a second order discretization. Moreover, the fact that different forms of the mass matrix lead to very similar accuracy
properties leads us to the conclusion that the choice of the form of the mass matrix should be done on the basis of stability
(or positivity eventually) considerations. This is the objective of our current investigations.
Fig. 3. Typical topology of the meshes used in the numerical tests.



Fig. 4. Scalar advection: grid convergence for the LDA scheme. Top-left: formulation F1. Top-right: formulation F2. Bottom-left: formulation F3. Bottom-
right: formulation F4.
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6.2. Discontinuous solutions: 2d Burger’s equation

We consider now the nonlinear 2d Burger’s equation
@tuþ @x
u2

2

� �
þ @y

u2

2

� �
¼ 0:
We solve the problem on the square [�1,1]2 with the discontinuous initial solution
u0 ¼
1 if x 2 ½�0:6;�0:1� � ½�0:35; 0:15�
0 otherwise

�

The problem is solved up to the final time t = 1 on an unstructured triangulation with the topology shown on Fig. 3, and ref-
erence size h � 1/80. We compare the results of all the schemes considered. Only the simplest mass matrix form F1 (cf. Sec-
tion 3) has been used.

We first consider the multidimensional upwind LDA and B schemes. The results for different RK schemes and lumping
strategy are shown on Figs. 9–16. Concerning the LDA scheme, as one would expect, the solution exhibits oscillations near
the discontinuities. These oscillations are much more pronounced when using selective lumping. More interesting are how-
ever the results of the B scheme, shown on Figs. 17–24. From all the contour plots we can see that the solution is smoother
(the kinks close to the shock are less pronounced) when compared to the LDA scheme. When using selective lumping



Fig. 5. Scalar advection: convergence rates for the LDA scheme. Top-left: formulation F1. Top-right: formulation F2. Bottom-left: formulation F3. Bottom-
right: formulation F4.
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oscillations still appear close to the discontinuity. This, as observed at the end of Section 5.2, is a consequence of the non-
positive coefficients introduced by the Galerkin integral present when lumping selectively. A mixed formulation, in which
these terms are also multiplied by the blending coefficient, might be used to cure the problem, but this is beyond the scopes
of this paper and left for future work. The results obtained with global lumping show the expected monotone resolution of
the discontinuities. Probably, the small negative undershoots can also be avoided by properly redefining the blending. Again,
this is beyond the scopes of this paper and left for the future.

The results obtained with the centered distributions are displayed on Figs. 17–24. The qualitative behavior of these
schemes is similar to the one of the multidimensional upwind discretizations. The linear SU scheme gives oscillations near
the discontinuities. Milder oscillations are obtained when using global lumping. Concerning the Bc scheme, the results show
smoother contours (the kinks close to the shock are less pronounced), and less oscillations. However, only the results ob-
tained using global lumping show a monotone resolution of the moving shock.

We judge the results obtained on this nonlinear problem very encouraging : even without modifying the basic RD distri-
bution, the nonlinear second order explicit RK–RD schemes can yield monotone solutions. This is further confirmed by the
Euler results discussed hereafter.

7. Euler equations

As already said in Section 5, the extension of the schemes to the system of Euler equations is performed formally. As in the
scalar case, the nonlinear schemes are not modified to take into account the additional terms coming from the explicit RK
formulation and to improve their behavior close to discontinuities. For simplicity, only the schemes based on the simple



Fig. 6. Scalar advection: grid convergence for the SU scheme. Top row: formulation F1. Bottom row: formulation F2. Left column: convergence history. Right
column: convergence rates.
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mass matrix formulation F1 (cf. Section 3) are tested. The objective of the tests is to asses the accuracy of the discretizations,
and the behavior of the nonlinear schemes in presence of a strong moving planar shock, and for more complex flow struc-
tures involving several contact lines and interactions between shocks and expansions.

7.1. Advection of a vortex: grid convergence

The accuracy of the schemes is measured on the advection of a constant density vortex. The test has been initially pro-
posed in [21], to which we refer for all the details concerning its implementation. The solution involves the advection of a
vortex with a constant density profile, and a smooth pressure variation of which the analytical form is known [21]. We solve
the problem on a set of five unstructured grids with the topology shown on Fig. 3. The coarsest grid as a reference size of
h � 1/20. The other meshes are obtained by means of four successive steps of conformal refinement. We measure the accu-
racy by means of the L2 norm of the relative pressure error
�p ¼
p� pexact

p1
see [21] for the definition of p1 and of pexact. The behavior of the L1 and L1 norms is qualitatively and quantitatively very
similar. The results are displayed on Figs. 25–28 in terms of error convergence history, and rate of convergence history.
The results are qualitatively very similar to the ones discussed in Section 6.1. With the exception of the first refining step,
we do obtain roughly second order of convergence with all the schemes except the RK3 ones when using global lumping.



Fig. 7. Scalar advection: grid convergence for the B scheme. Top row: formulation F1. Bottom row: formulation F2. Left column: convergence history. Right
column: convergence rates.
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These schemes, exactly as in the scalar case, show a more or less evident decrease in accuracy, as the mesh is refined. The
poor convergence rate at the first refinement step might be explained by the coarseness of the first meshes: the starting
mesh only has 10 points through the vortex core, the second one 20 points. The drop in convergence rates of the RK3–GL
schemes might be a consequence of a linear stability problem. This is under investigation.

The main difference between the distribution strategies is that the B scheme gives a slightly smaller asymptotic accuracy
of about 1.7, while all the others attain convergence rates closer to 2. While this is expected for the linear schemes, we be-
lieve the face that the Bc scheme shows a better convergence is due to the definition of the entropy smoothness sensor d(uh)
proposed in [2] and used for the blending, which really is turned on only very close to discontinuities. Once more, the
improvement of the nonlinear schemes is a topic for future work. Nevertheless, the results obtained confirm once more
our theoretical analysis.
7.2. Double Mach reflection

In this test we check the behavior of the nonlinear schemes in presence of a strong moving planar shock. The test case is
that of a reflection of a Mach 10 oblique shock over a ramp proposed by Woodward and Colella in [42], to which we refer for
details concerning the implementation. The computations have been run on an unstructured triangulation with the topology
shown on Fig. 3 and reference mesh size h � 1/100.



Fig. 8. Scalar advection: grid convergence for the Bc scheme. Left column: convergence history. Right column: convergence rates.

1

Fig. 9. 2d Burger’s equation: LDA–F1–SL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.
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We display on Figs. 29 and 30 the density contours obtained with the B and Bc scheme, respectively. The first remark we
can make is that even in presence of a strong moving shock both nonlinear discretizations yield quite smooth and non-oscil-
latory results. To confirm this we report on Figs. 31 and 32 the density and entropy distributions across the shock and on the
wall, respectively. From Fig. 31 we see that the shock is resolved very sharply. Only a small overshoot in its vicinity is ob-
served in almost all the solutions. An exception to this is the B scheme with RK3 time stepping and global lumping. In this
case, as it can be also seen from the contour plot on Fig. 29 (bottom-right), we obtain some strange behavior in correspon-
dence of the compression region where the bent incoming shock changes curvature. This seems to be a feature propagating
from the upper boundary, where the exact shock movement is strongly imposed. This affects both the shock profile, as seen
on Fig. 31, and the structures on the lower wall, as seen on Fig. 32. So far we have not been able to explain this behavior.

Apart from the above remarks, the solutions obtained are very satisfactory. The minimum and maximum values of the
density, reported on Table 1 also show that the minimum of the density is always very close to 1.4 (its analytical value),
again with the exception of the B-GL–RK3 scheme.
7.3. Mach 3 wind tunnel with a step

This final test is also taken from [42] and involves the formation and evolution of a moving shock in a Mach 3 wind tunnel
with a step. We refer to [42] for details concerning the implementation of the test case. The mesh used for the computations



Fig. 10. 2d Burger’s equation: LDA–F1–GL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.

Fig. 11. 2d Burger’s equation: LDA–F1–SL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.

Fig. 12. 2d Burger’s equation: LDA–F1–GL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.
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Fig. 13. 2d Burger’s equation: B–F1–SL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Fig. 14. 2d Burger’s equation: B–F1–GL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Fig. 15. 2d Burger’s equation: B–F1–SL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Fig. 16. 2d Burger’s equation: B–F1–GL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Fig. 17. 2d Burger’s equation: SU–F1–SL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.

Fig. 18. 2d Burger’s equation: SU–F1–GL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.
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Fig. 19. 2d Burger’s equation: SU–F1–SL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.

Fig. 20. 2d Burger’s equation: SU–F1–GL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line.
Right: minimum and maximum values of the solution.

Fig. 21. 2d Burger’s equation: Bc–SL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Fig. 22. 2d Burger’s equation: Bc–GL–RK2 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Fig. 23. 2d Burger’s equation: Bc–SL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Fig. 24. 2d Burger’s equation: Bc–GL–RK3 scheme. Left: contours at time t = 1. Middle: solution along the line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Fig. 25. Vortex advection: grid convergence for the LDA scheme with F1. Left column: convergence history. Right column: convergence rates.

Fig. 26. Vortex advection: grid convergence for the B scheme with F1. Left column: convergence history. Right column: convergence rates.
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is the same used in [15,17]. A close up view in vicinity of the corner of the step is displayed on Fig. 33. The reference mesh
size far from the corner is h � 1/80. The mesh is refined at the corner to attain a minimum size of h � 1/1000. No particular
numerical treatment has been used near the corner to handle the supersonic expansion taking place during the transient.

The solutions obtained at times t = 0.5, t = 1.5, and t = 4.0 with the B and Bc schemes are shown on Figs. 34–41. All
the figures show a monotone and sharp resolution of the shocks, and of the contact lines. The non-oscillatory character
of the results is confirmed by the line plots of the solution along the upper wall of the step (line y = 0.2 containing the
corner singularity). We never obtained negative densities. Note that this is a test case where the explicit formulation
does give an advantage with respect to the implicit schemes based on Crank–Nicholson time integration [4,33]. Even if
implicit in time, the positivity of the schemes proposed in the last references is still guaranteed by an explicit type
time step restriction which, in presence of mesh refinement, renders the implicit formulation extremely time
consuming.

As a last remark, we note that the Bc scheme with selective lumping yields a much better resolution of the flow, as seen
for example from the kinks of the initial shock (top-left on Figs. 38 and 39), and from the resolution of the contact emanating
from the interaction of the corner expansion with the reflected shock (middle-left on Figs. 38 and 39).



Fig. 27. Vortex advection: grid convergence for the SU scheme with F1. Left column: convergence history. Right column: convergence rates.

Fig. 28. Vortex advection: grid convergence for the Bc scheme. Left column: convergence history. Right column: convergence rates.

Fig. 29. Double Mach reflection. Density contours for the B scheme. 30 equally spaced contours from 1 to 24. Top row: RK2. Bottom row: RK3. Left column:
selective lumping. Right column: global lumping.
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Fig. 30. Double Mach reflection. Density contours for the Bc scheme. 30 equally spaced contours from 1 to 24. Top row: RK2. Bottom row: RK3. Left column:
selective lumping. Right column: global lumping.

Fig. 31. Double Mach reflection. Solution across the oblique shock (y = 0.6). Top row: density. Bottom row: entropy. Left column: B scheme. Right column:
Bc scheme.
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8. Conclusions

In this paper, we have described a strategy to construct explicit second order Residual Distribution schemes based on
Runge–Kutta time integration. The final discrete equations are obtained through three steps: recasting RD as stabilized



Fig. 32. Double Mach reflection. Solution along the wall (y = 0). Top row: density. Bottom row: entropy. Left column: B scheme. Right column: Bc scheme.

Table 1
Double Mach reflection: minimum and maximum values of the density. Left: B scheme. Right: Bc scheme.

qmin qmax

B–SL–RK2 1.40 22.30
B–SL–RK3 1.29 22.30
B–GL–RK2 1.37 22.30
B–GL–RK3 0.77 22.20

Bc–SL–RK2 1.398 24.12
Bc–SL–RK3 1.4 24.07
Bc–GL–RK2 1.397 24.00
Bc–GL–RK3 1.396 23.98

Fig. 33. Mach 3 wind tunnel: close-up view of the mesh around the corner (h ¼ 1=80 far from the corner, h ¼ 10�3 at the corner).
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Fig. 34. Mach 3 wind tunnel: B–SL–RK2 scheme. Left: density contours at time t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.

Fig. 35. Mach 3 wind tunnel: B–SL–RK3 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.
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Galerkin schemes, introducing a time-shifted residual in the RD stabilization, using high order mass lumping to obtain a fully
explicit update. All the theoretical arguments justifying our construction have been thoroughly discussed, and strong numer-
ical evidence has been given to confirm them.



Fig. 36. Mach 3 wind tunnel: B–GL–RK2 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.

Fig. 37. Mach 3 wind tunnel: B–GL–RK3 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.
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The numerical results are extremely encouraging both concerning accuracy, and monotonicity. We think this work paves
the way for a different class of RD schemes based on explicit, or mixed, time integration where the RD mass matrix does not
necessarily need to be inverted.



Fig. 38. Mach 3 wind tunnel: Bc-SL-RK2 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.

Fig. 39. Mach 3 wind tunnel: Bc–SL–RK3 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.
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Concerning the developments of the work reported in this paper, we mention the following points:

� We are currently performing a Fourier analysis on structured triangulations to better understand the linear stability prop-
erties of the linear schemes, when using different forms of the mass matrix, and also to understand the influence of the
type of lumping on the stability of the resulting scheme.



Fig. 40. Mach 3 wind tunnel: Bc–GL–RK2 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.

Fig. 41. Mach 3 wind tunnel: Bc–GL–RK3 scheme. Left: density contours at time (t = 0.5 (top), t = 1.5 (middle), and t = 4.0 (bottom); 30 equally spaced
contours between 0.5 and 8. Right: density distribution along the line y = 0.2, and minimum and maximum values of the density.
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� Even though we judge the results presented here quite satisfactory (especially for the Euler equations) there is definitely
space to improve the nonlinear schemes, taking into account the fully discrete RK time-stepping and the terms arising
from mass lumping in the positivity analysis.
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� An immediate application of the explicit RK–RD schemes is given by the Shallow Water equations where the preservation
of the positivity of the depth leads, for the standard implicit RD, to a strict constraint on the time step [32]. We think the
RK–RD approach proposed would represent an improvement, still preserving most of the nice properties of the RD
discretization.
� The extension to more than second order should be relatively straight forward when making use of higher order elements

allowing higher order mass lumping. From this point of view we will profit of the work that has been done on the wave
equation (see e.g. [23,39] and references therein).
� The technique described here can also be used in conjunction with discontinuous data representation. In particular, our

approach gives a means of extending the discontinuous RD schemes proposed in [7,27] without the need of inverting the
local RD mass matrix. Higher order variants of these explicit discontinuous RD schemes can be obtained using local finite
element spaces borrowed from [23,39].
� It will definitely very interesting to see how the high order version of these RK–RD schemes (with continuous or discon-

tinuous space approximations) perform in terms of accuracy and shock capturing when compared to other higher order
discretization approaches such as e.g. the Runge–Kutta Discontinuous Galerkin schemes [13], or the spectral finite volume
method of [41].
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Appendix A. Proof of Proposition 4.3

We derive a sufficient condition on the �rk guaranteeing that the accuracy of the Runge–Kutta Galerkin approximation is
not lost when adding the bubble contribution. To do this we use a truncation error analysis, following the approach of [31].
What we want to do is to show that for a pth order spatial approximation, and when employing a pth order RK scheme, the
solution at time tn verifies a truncation error equation of the type En 6 Cnhp. A global space–time truncation error estimate
can then be obtained by integrating over each time interval and adding up over all the time slabs.

To do this we consider a more general polynomial approximation in space. The degrees of freedom are still approxima-
tions of the values of the unknown in some nodal locations of the mesh, except that, differently from the P1 case, these are
the element vertices plus other locations, as for example in standard Pk elements, or in more ‘‘exotic” polynomial spaces,
such as the ones proposed in [23,39,38]. As before, we denote by ui the basis functions spanning the polynomial space,
by uh the spatial approximation of a function u, and with K we denote the total number of degrees of freedom (DoF) con-
tained in an element of the mesh.

We start by recalling that, given a smooth classical solution of the problem w, Hypothesis 4.1 guarantees that a pth order
RK scheme verifies the truncation error estimate
rnþ1ðwÞ ¼ dwnþ1

Dt
þ enþ1ðwÞ ¼ CRKðwnÞDtp;
where, with the notation of Section 4.1, we have explicitly used the fact that for the last stage of the RK scheme rk = rn+1.
Similarly, Hypothesis 4.2 ensures that the modified semi-discrete operator used in the bubble function verifies the estimate
�rnþ1ðwÞ ¼ dwnþ1

Dt
þ enþ1ðwÞ ¼ CRKðwnÞDtl;
where certainly l 6 p. Both hypotheses are verified in Appendix B for the RK2 and RK3 schemes considered in the paper.
Next we define, for the stabilized Galerkin scheme, the following truncation error:
En ¼
X
i2T h

wi

Z
X
uir

nþ1ðwhÞdxdyþ
X
i2T h

wi

X
Tji2T

Z
T
cirnþ1ðwhÞdxdy

�����
�����; ð69Þ
where the wis are nodal values of a C1
0ðXÞ function, which is assumed to verify [31]
kwkL1ðXÞ 6 Cw; kwhkL1ðXÞ 6 Cwh
; krwkL1ðXÞ 6 Crw; krwhkL1ðXÞ 6 Crwh

ð70Þ
having denoted by wh the pth order polynomial approximation of w corresponding to the approximation space chosen. Sim-
ilarly, wh represents the spatial interpolant of the given smooth exact solution w. As a second step, we can immediately re-
write the error as
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En ¼
Z

X
whrnþ1ðwhÞdxdy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{I

þ
X

T2T h

X
j
2 T

Z
T
cjwjrnþ1ðwhÞdxdy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{II
��������

��������:

Next we estimate the two terms in the error. For I we immediately make use of Hypothesis 4.1:
I ¼
Z

X
wh @twn

h þr �F h wn
h

	 
	 

dxdyþ

Z
X

whCRK wn
h

	 

Dtpdxdy:
Now, being w a smooth exact solution, we have @twn þr �F ðunÞ ¼ 0, hence I can be rewritten as
I ¼
Z

X
wh@tðwn

h �wnÞdxdyþ
Z

X
whr � F h wn

h

	 

�F ðwnÞ

	 

dxdyþ

Z
X

whCRK wn
h

	 

Dtpdxdy

¼
Z

X
wh@t wn

h �wn
	 


dxdy�
Z

X
F h wn

h

	 

�F ðwnÞ

	 

� rwh dxdyþ

Z
X

whCRK wn
h

	 

Dtp dxdy;
where, following [6,31], we have broken the second integral over elements, integrated by parts over each element, re-assem-
bled, and used the fact that w 2 C1

0ðXÞ. Due to the assumptions on w (cf. equation (70)), we can now use the properties of the
approximation to estimate all terms, ending up with
jIj 6 CwðT h;wnÞhp þ CF ðT h;wnÞhp þ CRKðT h;wnÞDtp ¼ C0ðT h;wnÞhp þ CRKðT h;wnÞDtp: ð71Þ
This term is nothing else than the truncation error of the Galerkin scheme. As expected, it is of an order dictated purely by
the spatial and temporal approximations.

We now estimate the term II. First of all we note that since
P

jcj ¼ 0, then we can write
II ¼ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞrnþ1ðwhÞdxdy;
where we recall that K denotes the number of DoF in an element. Next we use Hypothesis 4.2 to get
II ¼ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞ@twn

hdxdyþ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞr �F hðwn

hÞdxdy

þ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞCRKðwnÞDtldxdy
Using again the fact that w is a classical solution we have
II ¼ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞ@tðwn

h �wnÞdxdyþ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞr � F hðwn

hÞ �F ðwnÞ
	 


dxdy

þ 1
K

X
T2T h

X
j2T

X
i2T

Z
T
cjðwj � wiÞCRKðwnÞDtldxdy:
In order to give an upper bound to the last expression, we make use of the fact that in 2D the total number of elements in the
mesh can be bounded by h�2, the properties of w to deduce that wj � wi can be bounded by krwkL1ðXÞh, the fact that
jTj 6 C0h2, and the properties of the approximation. This leads to
jIIj 6 CðX; T hÞh�2kckL1ðXÞC0h2krwkL1ðXÞhCwðT h;wnÞhp þ CðX; T hÞh�2kckL1ðXÞC0h2krwkL1ðXÞhCrF ðT h;wnÞhp�1

þ CðX; T hÞh�2kckL1ðXÞC0h2krwkL1ðXÞhCRKðwnÞDtl:
With kckL1ðXÞ ¼maxT2T h
maxj2TkcjkL1ðTÞ. Setting C1ðX;T h;wnÞ¼ CðX;T hÞC0Crw maxðCwðT h;wnÞ;CrF ðT h;wnÞÞ, and C RKðX;T h;wnÞ

¼ CðX;T hÞC0CrwCRKðwnÞ we get the estimate
jIIj 6 kckL1ðXÞ C1ðX; T h;wnÞhp þ CRKðX; T h;wnÞhDtl
	 


:

Assembling the Galerkin error and the error associated to the bubble, we get finally
En 6 C0ðT h;wnÞhp þ CRKðT h;wnÞDtp þ kckL1ðXÞC1ðX; T h;wnÞhp þ kckL1ðXÞCRKðX; T h;wnÞhDtl: ð72Þ
This immediately shows that, provided that the bubble functions are uniformly bounded, we are allowed to have l 6 p, in
particular, it is enough to take l = p � 1 to retain the accuracy of the Galerkin approximation.

In particular, if, as it is always the case for explicit schemes, we can find two positive bounded constants Ch/Dt and CDt/h

such that



M. Ricchiuto, R. Abgrall / Journal of Computational Physics 229 (2010) 5653–5691 5689
Ch=Dt 6
Dt
h
6 CDt=h
then we have for l = p � 1
En 6 Chp ð73Þ
with
C ¼ C0ðT h;wnÞ þ CRKðT h;wnÞCp
Dt=h þ kckL1ðXÞ C1ðX; T h;wnÞ þ C RKðX; T h;wnÞCp�1

Dt=h

� �
:

Note that, mass lumping is kept out of the analysis. However, as shown in Section 3, it can be included in the definition of the
(bounded) bubble function, at least in the P1 case. For the higher order case, we refer to [23,39,38] for more.
Appendix B. Hypotheses 4.1 and 4.2

In this appendix, we justify the choice of the approximate time increments duk (cf. Section 4.1 and Appendix A) for the
RK2 and RK3 schemes of Section 4.1. We recall that the constraint to respect is that for the last RK step
�rk ¼ duk

Dt
þ �ek ¼ OðDtlÞ
with l P p � 1, where with p we denote the (desired) overall accuracy of the scheme. The analysis will be performed for the
autonomous ODE:
@tuþ eðuÞ ¼ 0: ð74Þ
B.1. RK2 scheme

Let us start by verifying Hypothesis 4.1 for the RK2 scheme defined by
u1 ¼ un � DteðunÞ;

unþ1 ¼ un � Dt
2

eðunÞ � Dt
2

eðu1Þ:
When replacing un and un + 1 by the values at tn and tn + 1 of an exact solution w(t), and using the fact that w1 = wn � Dt f(wn),
we can write
eðw1Þ ¼ eðwn þ ðw1 �wnÞÞ ¼ eðwnÞ þ ðw1 �wnÞ@ueðunÞ þ ðw
1 �wnÞ2

2
@uueðunÞ þ Oððw1 �wnÞ3Þ

¼ eðwnÞ � DteðunÞ@ueðunÞ þ Dt2

2
eðunÞ2@uueðunÞ þ OðDt3Þ
which immediately leads to
wnþ1�wn

Dt
þ1

2
ðeðwnÞþeðw1ÞÞ¼ @twnþDt

2
@ttwnþDt2

6
@tttwnþeðwnÞ�Dt

2
eðwnÞ@ueðwnÞþDt2

4
eðwnÞ2@uueðwnÞþOðDt3Þ

¼ @twnþeðwnÞ�Dt2

3
1
2

eðwnÞ@ueðwnÞ2þ1
4

eðwnÞ2@uueðwnÞ
� �

þOðDt3Þ¼OðDt2Þ
having used the relations
@twn ¼ �eðwnÞ;
@ttwn ¼ eðwnÞ@ueðwnÞ;
@tttwn ¼ �eðwnÞ@ueðwnÞ2 � eðwnÞ2@uueðwnÞ;
@ttttwn ¼ eðwnÞ@ueðwnÞ3 þ 4eðwnÞ2@ueðwnÞ@uueðwnÞ þ eðwnÞ3@uuueðwnÞ:

ð75Þ
To verify Hypothesis 4.2, we perform a similar exercise:
�rnþ1 ¼ w1 �wn

Dt
þ 1

2
ðeðwnÞ þ eðw1ÞÞ ¼ �eðwnÞ þ 1

2
ðeðwnÞ þ eðw1ÞÞ ¼ �1

2
eðwnÞ þ 1

2
eðwnÞ � Dt

2
eðwnÞ@ueðwnÞ þ OðDt2Þ

¼ �Dt
2

eðwnÞ@ueðwnÞ þ OðDt2Þ ¼ OðDtÞ
proving that this definition of �rnþ1 is enough for use in the stabilization term in second order schemes.
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B.2. RK3 scheme

We repeat the same exercise for the RK3 scheme defined by
u1 ¼ un � DteðunÞ;

u2 ¼ un � Dt
4

eðunÞ � Dt
4

eðu1Þ;

unþ1 ¼ un � Dt
6

eðunÞ � 2Dt
3

eðu2Þ � Dt
6

eðu1Þ:
When replacing un and un + 1 by the values at tn and tn + 1 of an exact solution w(t), we can easily prove the following
developments
eðw1Þ ¼ eðwnÞ � DteðwnÞ@ueðwnÞ þ Dt2

2
eðwnÞ2@uueðwnÞ � Dt3

6
eðwnÞ3@uuueðwnÞ þ OðDt4Þeðw2Þ

¼ eðwnÞ � Dt
2

eðwnÞ@ueðwnÞ þ Dt2

4
eðwnÞ@ueðwnÞ2 þ 1

2
eðwnÞ2@uueðwnÞ

� �
� Dt3

8
2eðwnÞ2@ueðwnÞ@uueðwnÞ þ 1

6
eðwnÞ3@uuueðwnÞ

� �
þOðDt4Þ
These developments can be readily used to show that
wnþ1 �wn

Dt
þ 1

6
eðwnÞ þ 1

6
eðw1Þ þ 2

3
eðw2Þ ¼ @twn þ Dt

2
@ttwn þ Dt2

6
@tttwn þ Dt3

24
@ttttwn þ 1

6
eðwnÞ þ 1

6
eðwnÞ

� Dt
6

eðwnÞ@ueðwnÞ þ Dt2

12
eðwnÞ2@uueðwnÞ � Dt3

36
eðwnÞ3@uuueðwnÞ þ 2

3
eðwnÞ

� Dt
3

eðwnÞ@ueðwnÞ þ Dt2

6
1
2

eðwnÞ2@uueðwnÞ þ eðwnÞ@ueðwnÞ2
� �

� Dt3

12
2eðwnÞ2@ueðwnÞ@uueðwnÞ þ 1

6
eðwnÞ3@uuueðwnÞ

� �
þOðDt4Þ
which, using (75), leads immediately to
wnþ1 �wn

Dt
þ 1

6
eðwnÞ þ 1

6
eðw1Þ þ 2

3
eðw2Þ ¼ @twn þ eðwnÞ þ Dt3

12
eðwnÞ@ueðwnÞ3 þOðDt4Þ ¼ OðDt3Þ
A similar exercise can be used now to show that
�r2ðwÞ ¼ w1 �wn

2Dt
þ 1

4
eðwnÞ þ 1

4
eðw1Þ ¼ �1

2
eðwnÞ þ 1

4
eðwnÞ þ 1

4
eðwnÞ � Dt

4
eðwnÞ@ueðwnÞ þ OðDt2Þ

¼ �Dt
4

eðwnÞ@ueðwnÞ þ OðDt2Þ ¼ OðDtÞ
and more importantly that
�rnþ1ðwÞ ¼ 2
w2 �wn

Dt
þ 1

6
eðwnÞ þ 1

6
eðw1Þ þ 2

3
eðw2Þ

¼ 2
Dt
�Dt

2
eðwnÞ þ Dt2

4
eðwnÞ@ueðwnÞ � Dt3

8
eðwnÞ2@uueðwnÞ

� �
þ 1

6
eðwnÞ þ 1

6
eðwnÞ � Dt

6
eðwnÞ@ueðwnÞ

þ Dt2

12
eðwnÞ2@uueðwnÞ þ 2

3
eðwnÞ � Dt

3
eðwnÞ@ueðwnÞ þ Dt2

6
eðwnÞ@ueðwnÞ2 þ 1

2
eðwnÞ2@uueðwnÞ

� �
þOðDt3Þ

¼ Dt2

6
eðwnÞ@ueðwnÞ2 � 1

2
eðwnÞ2@uueðwnÞ

� �
þOðDt3Þ ¼ OðDt2Þ
which shows that also for the RK3 scheme, our definitions of the �rk do verify the accuracy constraint.
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